机器人消化内镜系统的研制及机械模型与活体动物实验研究(含视频)
作者:
作者单位:

1.郑州大学第一附属医院 消化内科;2.哈尔滨工业大学机器人技术与系统国家重点实验室;3.郑州大学公共卫生学院;4.常州市第一人民医院消化内科,常州 213000;5.常州市第一人民医院消化内科;6.南京医科大学附属常州第二人民医院消化内科

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省杰出外籍科学家工作室项目(GZS2020006);中原英才计划(ZYYCYU202012113)


Development of the robotic digestive endoscope system and an experimental study on mechanistic model and living animals (with video)
Author:
Affiliation:

Fund Project:

Outstanding Foreign Scientist Studio Project of Henan Province (GZS2020006); Zhongyuan Talent Program (ZYYCYU202012113)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    目的 研制机器人消化内镜系统(robotic digestive endoscope system,RDES),验证其可行性、安全性及操控性能。方法 基于主从控制系统设计RDES,包含3部分:整合内镜主体包括内镜和与之整合的内镜旋钮/按钮控制系统;机械臂系统包括基座、机械臂及连接在其上的内镜进退操控装置(有力反馈)和内镜轴向旋转操控装置;操控台包括内镜控制主手和图像显示器。操作者坐在远离检查台的操控台前,操控主手实现内镜头端弯曲、镜身进退及旋转,并通过主手上的按钮实现送气、送水、吸引、定图以及运动比切换功能。(1)活体猪胃镜检查实验:初学组、高级组医师各5名,每人分别操控RDES及普通内镜(间隔2周)行活体猪胃镜检查6次,比较检查时间。(2)仿真胃模型内壁画圆实验:初学组、高级组医师各5名,每人分别操控RDES 1∶1、RDES 5∶1模式和普通内镜完成画圆实验各6次,比较3种方式完成时间、准确度(即轨迹偏差)和工作量。结果 RDES运行良好,力反馈良好。活体猪胃镜检查实验中,胃镜检查均顺利完成,无黏膜损伤及出血、穿孔。初学组和高级组医师操控RDES的检查时间均随操控例次增加呈下降趋势,但操控RDES的下降值大于操控普通内镜(初学组P=0.033;高级组P=0.023)。仿真胃模型内壁画圆实验中,初学组医师操控RDES 1∶1、5∶1模式完成内镜下画圆时间均短于普通内镜[1.68(1.40,2.17)min、1.73(1.47,2.37)min比4.13(2.27,5.16)min,H=32.506,P<0.001],轨迹偏差均优于普通内镜[(0.50±0.11)mm、(0.46±0.11)mm比(0.82±0.26)mm,F=38.999,P<0.001],工作量均小于普通内镜[42.00(30.00,50.33)分、43.33(35.33,54.00)分比52.67(48.67,63.33)分,H=20.056,P<0.001];高级组医师操控RDES 1∶1、5∶1模式完成时间均长于普通内镜[1.72(1.37,2.53)min、1.57(1.25,2.58)min比1.15(0.86,1.58)min,H=13.233,P=0.001],但轨迹偏差[0.47(0.13,0.57)mm、0.44(0.39,0.58)mm比0.52(0.42,0.59)mm,H=3.202,P=0.202]、工作量[(44.62±21.77)分、(41.24±12.57)分比(44.71±17.92)分,F=0.369,P=0.693]和普通内镜差异无统计学意义。结论 RDES可实现远台操控,大大降低了工作强度;RDES可同时调控大小旋钮,使操控更灵活;RDES增加了运动比模式,使操控更精细;RDES易于初学者掌握,有望缩短医师培养周期;RDES为实现内镜远程操控和全自动消化内镜提供了可能。

    Abstract:

    Objective To develop a robotic digestive endoscope system (RDES) and to evaluate its feasibility, safety and control performance by experiments. Methods The RDES was designed based on the master‑slave control system, which consisted of 3 parts: the integrated endoscope, including a knob and button robotic control system integrated with a gastroscope; the robotic mechanical arm system, including the base and arm, as well as the endoscopic advance‑retreat control device (force‑feedback function was designed) and the endoscopic axial rotation control device; the control console, including a master manipulator and an image monitor. The operator sit far away from the endoscope and controlled the master manipulator to bend the end of the endoscope and to control advance, retract and rotation of the endoscope. The air supply, water supply, suction, figure fixing and motion scaling switching was realized by pressing buttons on the master manipulator. In the endoscopy experiments performed on live pigs, 5 physicians each were in the beginner and advanced groups. Each operator operated RDES and traditional endoscope (2 weeks interval) to perform porcine gastroscopy 6 times, comparing the examination time. In the experiment of endoscopic circle drawing on the inner wall of the simulated stomach model, each operator in the two groups operated RDES 1∶1 motion scaling, 5∶1 motion scaling and ordinary endoscope to complete endoscopic circle drawing 6 times, comparing the completion time, accuracy (i.e. trajectory deviation) and workload. Results RDES was operated normally with good force feedback function. All porcine in vivo gastroscopies were successful, without mucosal injury, bleeding or perforation. In beginner and advanced groups, the examination time of both RDES and ordinary endoscopy tended to decrease as the number of operations increased, but the decrease in time was greater for operating RDES than for operating ordinary endoscope (beginner group P=0.033; advanced group P=0.023). In the beginner group, the operators operating RDES with 1∶1 motion scaling or 5∶1 motion scaling to complete endoscopic circle drawing had shorter completion time [1.68 (1.40, 2.17) min, 1.73 (1.47, 2.37) min VS 4.13 (2.27, 5.16) min, H=32.506, P<0.001], better trajectory deviation (0.50±0.11 mm, 0.46±0.11 mm VS 0.82±0.26 mm, F=38.999, P<0.001], and less workload [42.00 (30.00, 50.33) points, 43.33 (35.33, 54.00) points VS 52.67 (48.67, 63.33) points, H=20.056, P<0.001] than operating ordinary endoscope. In the advanced group, the operators operating RDES with 1∶1 or 5∶1 motion scaling to complete endoscopic circle drawing had longer completion time than operating ordinary endoscope [1.72 (1.37, 2.53) min, 1.57 (1.25, 2.58) min VS 1.15 (0.86, 1.58) min, H=13.233, P=0.001], but trajectory deviation [0.47 (0.13, 0.57) mm, 0.44 (0.39, 0.58) mm VS 0.52 (0.42, 0.59) mm, H=3.202, P=0.202] and workload (44.62±21.77 points, 41.24±12.57 points VS 44.71±17.92 points, F=0.369, P=0.693) were not different from those of the ordinary endoscope. Conclusion The RDES enables remote control, greatly reducing the endoscopists'' workload. Additionally, it gives full play to the cooperative motion function of the large and small endoscopic knobs, making the control more flexible. Finally, it increases motion scaling switching function to make the control of endoscope more flexible and more accurate. It is also easy for beginners to learn and master, and can shorten the training period. So it can provide the possibility of remote endoscopic control and fully automated robotic endoscope.

    参考文献
    相似文献
    引证文献
引用本文

刘冰熔,付宜利,刘凯鹏,等.机器人消化内镜系统的研制及机械模型与活体动物实验研究(含视频)[J].中华消化内镜杂志,2024,41(1):35-42.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-18
  • 最后修改日期:2023-12-29
  • 录用日期:2023-06-01
  • 在线发布日期: 2024-01-03
  • 出版日期:
您是第位访问者

通信地址:南京市鼓楼区紫竹林3号《中华消化内镜杂志》编辑部   邮编:210003

中华消化内镜杂志 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司